Growth and Characterization of III-V Nanowires and Nanoneedles by
نویسندگان
چکیده
Integration of optoelectronic materials with silicon is an important area of study, which could enable silicon CMOS-integrated optical devices for chip-scale optical communication, with the potential for higher bandwidth and lower costs. However, optical-quality III-V thin-film growth on silicon is difficult due to the crystal lattice-mismatch between the materials, and III-V growth typically requires growth temperatures of 600 °C, whereas silicon CMOS processes are limited to < 450 °C. In this work we present methods for overcoming these lattice-mismatched epitaxial limitations. Au-catalyzed vapor-liquid-solid nanowire growth is conducted via metal-organic chemical vapor deposition, and material-dependent critical diameters are discussed. Experimental results are presented which support theoretical predictions of a critical nanowire maximum diameter for epitaxial growth. A model is developed which predicts the nanowire growth rate, and dependence of the crystal phase on the nanowire diameter observed in experiments. 2 We also present a new growth mode which produces III-V nanoneedles via metal-organic chemical vapor deposition. The nanoneedles are catalyst-free, ultra-sharp GaAs-based structures, with record narrow tip diameters of less than 1 nm, sharp 6-9° taper angles, and lengths up to 10 μm. The crystals are pure wurtzite phase crystal, free of zincblende phases, which is uncommon for GaAs. The nanoneedles grow on GaAs, silicon and sapphire substrates and exhibit bright room-temperature photoluminescence. The growths are conducted at 380 to 420 °C, making the process ideal for silicon-CMOS integration. The nanoneedles can also be large enough for device fabrication using top-down, standard processing techniques. Growth of ternary nanoneedles is also demonstrated, specifically, pure InGaAs nanoneedles. The InGaAs nanoneedles exhibit similar structural properties as the GaAs nanoneedles, being single-crystal, with bright photoluminescence and ultra-sharp tips. Core-shell heterostructure nanoneedles of InGaAs and AlGaAs are also demonstrated. InGaAs quantum well nanoneedles having near-band-edge emission tunable by 380 meV are also shown, with photoluminescence emission below the silicon absorption edge, facilitating use of integrated passive silicon devices. Transmission electron microscopy analysis of the nanoneedles is also presented. The results elucidate the uniform crystal phase and lattice constants, and show the ultra-sharp tips of the nanoneedles of the different III-V nanoneedle compositions grown on the various substrates.
منابع مشابه
Growth and Characterization of III-V Nanowires and Nanoneedles
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission....
متن کاملTailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon.
Nanoscale self-assembly offers a pathway to realize heterogeneous integration of III-V materials on silicon. However, for III-V nanowires directly grown on silicon, dislocation-free single-crystal quality could only be attained below certain critical dimensions. We recently reported a new approach that overcomes this size constraint, demonstrating the growth of single-crystal InGaAs/GaAs and In...
متن کاملGrowth and Characterization of Iron Nanowires Into Anodized Aluminum Oxide Templates Using Electrodeposition Technique
The Fe nanowires were prepared by Ac electrodeposition method. The two steps anodized aluminum oxides (alumina) were used as templates for electrodeposition of magnetic nanowires. Sulfuric acid was used to anodize aluminum. The pours diameter and growth rate of alumina were investigated. The FeSO4 electrolyte was used for growth of nanowires. The prepared magnetic nanowires were characterized b...
متن کاملSynthesis and characterization of nanowires Hausmannite (Mn3O4) by solid-state thermal decomposition
In this study, we synthesis one-dimensional (1D) manganese(III) Schiff base coordination polymer [Mn(Brsalophen)(μ1,3-N3)]n by reaction of MnCl2·6H2O and tetradentate Schiff base ligand Brsalophen at the presence of NaN3 in methanol and characterized by elemental analyses (CHN) and FT-IR spectroscopy. It was used as a new precurs...
متن کاملSynthesis and characterization of nanowires Hausmannite (Mn3O4) by solid-state thermal decomposition
In this study, we synthesis one-dimensional (1D) manganese(III) Schiff base coordination polymer [Mn(Brsalophen)(μ1,3-N3)]n by reaction of MnCl2·6H2O and tetradentate Schiff base ligand Brsalophen at the presence of NaN3 in methanol and characterized by elemental analyses (CHN) and FT-IR spectroscopy. It was used as a new precurs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010